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NOTE ON MULTIPLICITY

DANIEL KATZ

(Communicated by Louis J. Ratliff, Jr.)

ABSTRACT. Let (R, M) be a local ring with infinite residue field and / =

(xi,... ,Xd)R an ideal generated by a system of parameters. It is shown that

the multiplicity of / equals the multiplicity of IT where

and R = R/(0: x%),N\axge.

Introduction. Let (R, M) be a local ring with infinite residue field. A device

commonly employed in studying the multiplicity of an M-primary ideal is to go

mod a superficial element. The effect is to reduce the dimension of the ring yet

preserve the multiplicity. This technique is particularly useful in proving theorems

about multiplicity by induction on the dimension of R. There are however, oc-

casions when this process can be ineffective—certain properties do not lift from

homomorphic images. Here we show that this difficulty can sometimes be circum-

vented by preserving the multiplicity upon passing to subrings of the total quotient

ring of R having smaller dimension. To wit, we prove that if / = (xi,..., x<¡)R is

an ideal generated by a system of parameters, then the multiplicity of / is the same

as the multiplicity of IT where

T = R[xi/xd,..., xd-i/xd]MR[xi/Xdi...,Xd_l/xd]

and R = R/(0: X¿),N sufficiently large. As corollaries we quickly deduce two

theorems of D. Rees concerning multiplicity. The first of these, implicit in [5] and

proven in [7] under unnecessarily restrictive hypotheses, asserts that if say R is a

domain, then there exist finitely many integers <¿¿ > 0 and discrete valuations Vi on

the quotient field of R such that the multiplicity of / equals ^2diVi(I). The second

is a classical theorem of Rees which guarantees that if J Ç J are M-primary ideals

in a quasi-unmixed local ring then I reduces J if and only if / and J have the same

multiplicity. In a brief second section we complete the generalization of a theorem

of B. Teissier concerning multiplicities begun by Rees and Sharp in [7].

1. Throughout (R, M) will denote a Noetherian local ring with maximal ideal

M. We shall assume once and for all that the residue field of R is infinite, though

as usual, all of the results below hold without this restriction. For an M-primary
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ideal / and a finitely generated iî-module P, e(I, P) will denote the multiplicity of

/ on P. That is, if d = dim(fi) then

e(I,P)=  lim ^lR(P/rP)
n—»oo n

where Ir(—) denotes the length of an Ä-module. In case R = P we set e(I,R) =

e(I). We shall make use of two standard properties of e(I, — ), namely:

(a) e(I, —) is additive on exact sequences.

(b) If dim P < dim R then e(I, P) = 0.
([2] is a convenient reference for the multiplicity symbol e(I, — ).) Recall that an

element g G I\I2 is a superficial element for / if there exists a positive integer c > 0

such that

(In: g)nlc = ln-1

for n > c. Of course, if / is M-primary, e(I) = e(I/(g)).

THEOREM 1.1. Let (R,M) be a local ring and I = (xi,... ,xd)R an ideal

generated by a system of parameters. Set

T = R[xi/xd,..., xd-i/xd]MR[xi/Xd,...<Xd_¡/xd]

where R = R/(0: x$), N large. Then e(I) = e(IT).

PROOF. We first observe that e(I) — e(IR). Apply e(I, -) to the short exact

sequence of Ä-modules

0 -► (0: x%) -* R -> R -y 0.

Then e(I,R) = e(I,R) + e(I, (0: x%)). Since dim(0: x%) < dimfi as A-modules,

e(I, (0: x^)) = 0. Thus e(I) = e(I,R) = e(I,R) = e(IR). Consequently, we may

replace R by R and write

T = R[xi/xd,..., xd-i/xd]MR[Xl/Xdt...<Xd_l/Xd].

The proof now proceeds by induction on d, the dimension of R. Suppose d = 2 and

/ = (xi,X2)i2 is generated by a system of parameters. Since R/M is infinite, there

exists t/i in R satisfying / = (yi,x2)R and j/i is superficial for / (see, for example

[11, p. 296]).
Let Z be an indeterminate, set g = x2Z—yi and write S for R(Z), the polynomial

ring R[Z] localized at MR[Z]. We claim that g is superficial for IS.

Indeed, suppose c > 0 satisfies (/": yi) C\ Ie = /n_1 for all n > c. Write

/ = Ei=0 riZ\ in R[Z] and suppose / G (InR[Z]: g) n ICR[Z]. Then

f ■ 9 = -yiro + (x2ro ~ y\ri)Z H-h (x2ra_i - yirs)Zs + x2rsZs+1.

It follows that r0 G (In:yi) n Ie. Thus r0 G 7n_1, so x2r0 G /". This implies

ri G (/": yi)nlc so rx G 7n_1 Inductively, we conclude that rt G 7"_1 for 0 < i < s,

so fe r-lR\z].
Thus, g is a superficial element for IR[Z] and it remains such for IR(Z) since

InR(Z) n R[Z] = InR[Z] for all n. Note that IS = (g,x2)S and e(I) = e(IS) =

e(IS/(g)).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



NOTE ON MULTIPLICITY 1023

Now let K be the kernel of the natural homomorphism from S to T which sends

Z to yi/x2 and set L = (g)S. We argue as above to show e(IS/L) = e(IT). View

0 -» K/L ^S/L^T^O

as an exact sequence of 5/L-modules and consider ë(-) = e(IS/L,—), the multi-

plicity of IS/L on each of these. Then ë(S/L) = ë(T) + ë(K/L). Since x^tf Ç L

for TV large, dim K/L < àivnS/L (as S/L-modules) so e(K/L) = 0. Thus

e(J) = e(/5) = e(IS/L) = ë(S/L) = ë(T) = e(IT)

as desired.

Now suppose the result holds for local rings of dimension less than d. As before,

we may select t/i in R such that I = (yi,x2,...,xd)R and t/i is superficial for I.

Then exactly the same proof shows that e(I) = e(ITi) where

Ti = R[yi/xd]MR[yi/xd]-

Since (Ti, MTi) is d — 1 dimensional and ITi — (x2,..., xd)Ti is generated by a

system of parameters, by induction we have that e(ITi) = e(IT*) where

T* = Ti[x2/xd,. .. ,Xd-i/xd}MTiR[x2/xd,...,xd--i/xd}-

However, it is readily seen that

T* = R[Vl/xd, ■■■, xd-l/xd\MR{y1/xd,...,xd-1/xd] = T.

Thus e(I) = e(2Ti) = e(IT*) = e(IT) and the proof is complete.

Corollary 1.2 (see [5, Theorem 2.3 and 7, Theorem 4.3]). Let
(R, M) be an analytically unramified local domain and J Ç R an M-primary ideal.

There exist finitely many integers d¿ > 0 and discrete valuations Vi on the quotient

field of R such that e(J) = ^diVi(J).

PROOF. Since R/M is infinite, there exists an ideal I = (xi,..., xd)R generated

by a system of parameters such that I Ç J and IJn = Jn+1 for n large (see [3]).

Consequently e(I) = e(J). Let T be as in the theorem so e(J) = e(I) = e(IT). Since

R is analytically unramified, T', the integral closure of T, is a finitely generated

T-module [4]. If we write Mi,... ,Mt for the maximal ideals of T' then

e(IT) = Y,\T'lMv.T/MT]e(IT'Mi)
I

where [T'/Mf.T/MT] is the algebraic degree of the extension T'/Mi 3 T/MT

([11], p. 299). Since T'M is a DVR with associated valuation t>¿, e(IT'M) — Vi(I).

The relation Jn+1 = IJn implies Vi(J) = Vi(I) for all i. Upon setting c/¿ =

[T'/Mt:T/MT] we have e(J) = J^dMJ).
REMARK. Corollary 1.2 extends to all local rings as Theorem 2.3 in [5] extends

to Theorem 3.2. This is accomplished by passing to the completion and using the

associativity formula to reduce to the case where R is a complete local domain,

hence analytically unramified.

Before proceeding to the second theorem of Rees we recall the notion of integral

dependence on an ideal. An element x in R is said to be integral over an ideal / if

x satisfies an equation of the form

x" + i'ixn_1 H-1- in = 0,        ik e Ik, 1 < k < n.

The set of elements 7 integral over J form an ideal and for any ideal J D I, I

reduces J if and only if 7 = J.
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COROLLARY 1.3 ([6], THEOREM 3.2). Let(R,M) be a quasi-unmixed local

ring and I C J M-primary ideals. If e(I) = e(J) then I = J.

PROOF. Recall that R is quasi-unmixed in case its completion is equidimen-

sional. Then as in [6], one uses the associativity formula to reduce to the case

where ii is a complete local domain (this is the only place where the quasi-unmixed

hypothesis is required). Since R/M is infinite, we may replace I by a minimal re-

duction generated by a system of parameters, say xi,... ,xd. Changing notation so

that I = (xi,..., xd)R and with T as in the theorem we have e(J) = e(I) = e(IT) >

e(JT). To see e(JT) > e(J) write T = S/K where S = R(ZU..., Zd_i) and set

L = (xdZi — xi,. ■ ■ ,xdZd-i — xd-i)S. Since L is part of a system of parameters

for S, e(J) = e(JS) < e(JS/L). As before, dim K/L < dim S/L (as 5/L-modules)

so e(JS/L) = e(JT). Thus e(IT) = e(JT). In the notation of Corollary 1.2,

e(IT) = J2dlVi(I)    and    e(JT) = ^c/m(J).
i I

Since Vi(J) < Vi(I) and di > 0 for all i, we must have Vi(J) = Vi(I) for all i. Thus

JQf]iT'MtnR = 7
i

(say, by [1], Proposition 3). Thus I = J and the proof is complete.

2. Teissier's theorem. In [9 and 10] Teissier proved the following theorem.

THEOREM. Let (R,M) be a d-dimensional Cohen-Macaulay complex analytic

algebra and I,JCR, M-primary ideals. Then
(1) e(IJ)1/d<e(I)1/d + e(J)1/d.

(2) Equality holds in (1) if and only if there exist positive integers a and b satis-

fying _
Ia = Jb.

Teissier's proof contains two essential algebraic ingredients. The first is to in-

volve the so-called mixed multiplicities of / and J and the second is to provide a

reduction procedure (really a strengthened superficial element argument) whereby

the theorem can be reduced to the two dimensional case. In [7] Rees and Sharp

give a purely algebraic proof of Teissier's theorem showing that (1) holds for any

two dimensional local ring and (2) holds for any two dimensional quasi-unmixed

local ring. They observe that Teissier's reduction carries over for (1) so that the

inequality remains valid for any local ring. The apparent obstruction to this proce-

dure as it applies to part (2) of the theorem is overcome by adopting the view put

forth in this note. We shall indicate the required reduction as painlessly as possible

(by assuming familiarity with [8, 9 and 10]).

PROPOSITION 2.1. Part (2) of Teissier's theorem holds for any quasi-unmixed

local ring of dimension d>2.

PROOF. Let e0 = eo(I/J),... ,ed = ed(I/J) denote the mixed multiplicities of I

and J defined in [7]. As Teissier shows in [10], the proposition reduces to proving

the following assertion. If eo = • • • = ed, then I = J. The proof now proceeds

by induction on d, the case d = 2 being proved in [7]. We indicate how the result

follows from the d — 1 case in several steps.
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(a) We may replace / by a minimal reduction and assume that it is generated

by a system of parameters, say xi,... ,xd. Neither the mixed multiplicities nor the

integral closures are disturbed.

(b) It follows from [8], Proposition 2.1, that there exist ro > 0 and yi e I such

that
(IrJs:yi)nlroJs = Ir-1Js

for all r > ro and s > 0.   It can be shown that yi may be chosen to satisfy

/= (î-i,z2,...,xd).

(c) For an indeterminate Z, set g = x2Z — yi. Then it is readily seen (as in the

proof of Theorem 1.1) that

(F JaR(Z): g) n IroJsR(Z) = Ir~1JsR(Z)

for all r > ro and s > 0.

(d) As in the proof of [8], Proposition 2.1, this implies that

e0 = e0,...,ed_i = e'd_x

where e0,..., e'd_1 are the mixed multiplicities of / and J as ideals of R(Z)/(g).

(e) R(Z)/(g) is quasi-unmixed and has dimension d — l. Therefore by induction

JR(Z)/(g) Ç IR(Z)/(g).
(f) Let PÇiîbe any minimal prime, write R for R/P and set

T = R[yi/x2]MR[yi/x2].

Since R(Z)/(g) maps onto T, JT C IT and because R is quasi-unmixed, ITilR =

IR (as in the proof of [1], Proposition 3). Thus JR Ç IR.

Since this holds for each minimal prime, J Ç I.

(g) By symmetry, I Ç J, and the proof is complete.
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